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New Covering Radius of Reed-Muller Codes for
�-Resilient Functions

Kaoru Kurosawa, Member, IEEE, Tetsu Iwata, and Takayuki Yoshiwara

Abstract— In this paper, we introduce a new covering radius
of ����� �� from a view point of cryptography. It is defined as
the maximum distance between �-resilient functions and the �-th
order Reed-Muller code ����� ��. We next derive its lower and
upper bounds. We further present a table of numerical data of
our bounds.

Index Terms— Covering radius, nonlinearity, Reed-Muller
code, �-resilient function, stream cipher.

I. INTRODUCTION

LET � � ���� � � � � ���, where each �� is a binary variable.
Then any Boolean function ���� is uniquely written as

the algebraic normal form such that

���� � �� �
�

�����

����

�
�

�������

�������� � � � � � �������������� � � ����

The degree of ����, denoted by ������, is defined as the
degree of the highest degree term in the algebraic normal form.

Now let ���� be a Boolean function such that ������ � �.
Let ���� be a noisy version of ���� in some sense. Then in
coding theory,

� ���� is a codeword of the �-th order Reed-Muller code
�	��� 
�,

� ���� is a received word when ���� is sent
� and the noise should be small.

The covering radius of �	��� 
� is defined as

���� 
� � ���
����

������� �	��� 
���

where the maximum is taken over any ����.
In cryptography, on the other hand,

� ���� is used as a main component of stream ciphers. In
nonlinear combination generators, it must be -resilient
[2], [1] to resist the fast correlation attack [13].

� ���� is an approximation of ���� which attackers make
use of

� and the noise should be large to resist attacks.
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In this paper, we introduce a new covering radius of
�	��� 
� from a view point of cryptography. It is defined
as the maximum distance between -resilient functions and
the �-th order Reed-Muller code �	��� 
�. That is,

	��� �� 
�
���
� ���

�-resilient ����
������� �	��� 
���

where the maximum is taken over -resilient functions ����.
It is clear that


 � 	��� �� 
� � ���� 
��

We next derive some lower bounds and upper bounds on
	��� �� 
�. We finally present a table of numerical data of our
bounds. One of our upper bounds is a generalization of the
previous result for � � � [17], [20], [22].

Our new concept is also meaningful to cryptography in the
context of the new class of algebraic attacks on stream ciphers
proposed by Courtois and Meier at Eurocrypt 2003 [4].

II. PRELIMINARIES

For two Boolean functions ���� and ����, let

���� �� � ��� � ���� �� ������

For a set of Boolean functions , define

����� � ���
	�����

���� ���

A. Stream Cipher [14]

In a stream cipher, a ciphertext sequence �� �� is computed
as

�� � �� � �� ��� ��

where ���� is a plaintext sequence and ���� is a keystream.
If some part of ���� is known to an attacker, then the
corresponding part of �� is obtained as

�� � �� � �� ��� ��

The attacker’s goal is to find a key � which generates the
whole (or almost all of) ���� from a short segment of ����.

An LFSR (linear feedback shift register) is a basic com-
ponent of keystream generators. It generates a sequence �� ��
recursively in such a way that

�� � ������ � � � �� �
���
 ��� ��

The smallest � which can generate ���� by the above equation
is called the linear complexity of ����.
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Fig. 1. Nonlinear combination generator

Keystream generators usually combine several LFSRs non-
linearly. A nonlinear combination generator is one of the most
common keystream generators such that

�� � �������� � � � � �������

where ���� is a nonlinear Boolean function and ����� is the
output of the �-th LFSR at time �, where � � � � 
.

B. Nonlinearity

Ding et al. showed that a linear attack can break the
nonlinear combination generator if ���� is approximated by
an affine function [5]. ���� is called an affine function if

���� � �� � ���� � � � �� ���� ��� ��

Hence ���� of Fig. 1 must have a large distance from the set
of affine functions.

The nonlinearity of ����, denoted by 
����, is defined as a
distance between ���� and the set of affine functions affine.
That is,


����
���
� ����affine��

Since affine � �	��� 
�, we see that


���� � �����	��� 
���

(In [5], the authors called the linear attack the BAA attack,
where BAA stands for best affine approximation.)

C. Resiliency

We say that ���� is balanced if

��� � ���� � 
� � ��� � ���� � �� � �����

Equivalently

������� � 
� � ������� � �� � ����

���� used in nonlinear combination generators must be
balanced because the keystream ���� must be random.

Further, the output

� � ����� � � � � ���

should not be correlated with any small subset of
���� � � � � ���. Otherwise, the fast correlation attack succeeds
[13]. For example, if � is correlated with some �� , then

the initial value of the �-th LFSR can be found by the fast
correlation attack [13].

We have the following definitions.

Definition 2.1 ([19]): We say that ���� is correlation im-
mune of order  if ���� is not correlated with any -subset of
���� � � � � ���. That is, ���� is correlation immune of order 
if

������� � 
 � ��� � ��� � � � � � ��� � ���� � ������� � 
�

for any  positions ��� � � � � �� and any  bits ��� � � � � � ��� .

Definition 2.2 ([2], [1]): We say that ���� is -resilient if
���� is balanced and ���� is correlation immune of order .
That is, ���� is -resilient if

������� � 
 � ��� � ��� � � � � � ��� � ���� � ���

for any  positions ��� � � � � �� and any  bits ��� � � � � � ��� .

Consequently, ���� must be -resilient for large . Siegen-
thaler showed the following inequality.

Proposition 2.1 ([19]): If ���� is -resilient for  � 
��,
then

������ � 
� � ��

where � � ���� � � � � ���.

D. Previous Work

From the above discussion, we see that ���� must be -
resilient for large  and 
���� should be as large as possible in
nonlinear combination generators. Sarkar and Maitra showed
the following divisibility result [17]. (A similar result was
shown in [22]).

Proposition 2.2: Let ���� be a -resilient function and
���� be an affine function. Then

������� ����� � 
 ��� ��	��

In [17], [20], [22], the authors derived an upper bound on

���� of -resilient functions as follows.

Proposition 2.3: Suppose that ���� is a -resilient func-
tion.

1) If 
 is even and � � � �
� � �, then


���� � ���� � ��	��

2) If 
 is even and � � � �
� � �, then


���� � ���� � �
�

��� � ��	��

3) If 
 is odd and ��	� � ���� � 
�����
�, then


���� � ���� � ��	��

4) If 
 is odd and ��	� � �����
�����
�, then 
���� is
the highest multiple of ��	� which is less than or equal
to ���� � 
�����
�,

where 
�����
� is the maximum possible nonlinearity of an

-variable function.

(Remark) Carlet and Sarkar derived general weight divisibility
on the Walsh transform of Boolean functions [3].
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III. LOW DEGREE APPROXIMATION ATTACK

In this section, we introduce a low degree approximation
attack on stream ciphers by generalizing the linear attack
of [5]. Nonlinear combination generators are broken by this
attack if ���� of Fig. 1 is approximated by a low degree
Boolean function.

A. Underlying Idea

Suppose that ���� is approximated by �	���. That is,

���	�� � ��� 	 ��

If the linear complexity of �	��� is not large enough, then the
fast correlation attack [13] can find the initial value of �	� ��
from a short segment of ����.

The linear complexity of ���� generated by the nonlinear
combination generator is given by the following proposition
[14, page 205]. In a nonlinear combination generator of Fig. 1,
let �� � � denote the linear complexity of the �-th LFSR for
� � � � 
. Then

Proposition 3.1: Suppose that each LFSR has maximum
length and ��� � � � � �� are pairwise distinct. Then the linear
complexity of ���� is ����� � � � � ���, where ����� � � � � ��� is
evaluated over integers.

B. Proposed Attack

We now show our attack. In Fig. 1, suppose that ���� is
approximated by a low degree Boolean function ����. That is,
���� �� is small. Let ���� the output sequence of the nonlinear
combination generator and let �	��� be the sequence obtained
by replacing ���� with ����. Then

1) �	��� is an approximation of ����.
2) From Proposition 3.1, there exists an LFSR which

generates �	��� such that the size of the LFSR is

�� � ����� � � � � ����

The proposed attack is to find the initial value 	� of �	���
from a short segment of ���� by using the fast correlation
attack attack [13].

It succeeds if �� is not large enough. If 	� is found, then
we can obtain the whole sequence of �	���. This implies that
a large part of ���� is leaked since �	��� is an approximation
of ����. In other words, �	��� is a noisy version of ���� and
the noise is small.

Therefore, a large part of the plaintext sequence is leaked.

IV. NEW COVERING RADIUS FOR -RESILIENT

FUNCTIONS

In this section, we introduce a new covering radius of Reed-
Muller codes from a view point of cryptography.

TABLE I

NUMERICAL BOUNDS ON ���� ��.

� � � � � � � �

� 	 � 0 1 2 6 12 28 56

� 	 � 0 1 2 6 18 40-44

� 	 � 0 1 2 8 20-23

� 	 � 0 1 2 8

� 	 � 0 1 2

� 	 � 0 1

� 	 � 0

A. Covering Radius of Reed-Muller Code

The �-th order Reed-Muller code �	��� 
� is identical to
the set of Boolean functions ���� such that ������ � �.
The covering radius of �	��� 
� is defined as the maximum
distance between ���� and �	��� 
�. That is,

���� 
� � ���
����

������� �	��� 
���

where the maximum is taken over ����.
Some numerical bounds on ���� 
� are illustrated in the

following table [15, page 802]. The entry �-� means that
� � ���� 
� � �.

B. New Covering Radius for -Resilient Functions

We say that ���� is a �
� �-resilient function if � �
���� � � � � ��� and � is -resilient.

Now ���� of Fig. 1 should not be approximated even
by low degree Boolean functions to resist the low degree
approximation attack shown in Sec. III. Further, ���� should
be -resilient to be secure against the fast correlation attacks.

From this point of view, we define a new covering radius of
�	��� 
� as the maximum distance between a �
� �-resilient
function ���� and �	��� 
�. That is,

	��� �� 
�
���
� ���

��� ��-resilient ����
������� �	��� 
���

where the maximum is taken over �
� �-resilient functions
����.

It is clear that


 � 	��� �� 
� � ���� 
��

Further, Siegenthalar’s inequality on resilient functions (Propo-
sition 2.1) immediately gives us the following proposition.

Proposition 4.1: If 
 � � � � �, then

	��� �� 
� � 
�

In what follows, we will derive lower bounds and upper
bounds on 	��� �� 
� for 
 � � � � �.

(Remark) Note that


���� � �����	��� 
���

In [17], [20], [22], the authors derived an upper bound on
	��� �� 
� in our terminology.
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TABLE II

TRUTH TABLE OF � .

��� � � � � ���� �� �


 � � � � � � 
 


...
... ���

� � � � � � � � 



 � � � � � � 
 �

...
... ��

� � � � � � � � �

V. LOWER BOUNDS ON 	��� �� 
�

In this section, we derive lower bounds on 	��� �� 
�.

A. Lower Bound for  � 


Theorem 5.1:

	��
� �� 
� 
 	��
� � � �� 
� ���

Proof: Suppose that 	��
� � � �� 
 � �� is achieved by
����� ��� � � � � �����. That is, � is balanced and

�����	�� � �� 
� ��� � 	��
� � � �� 
� ���

We first construct balanced � � and ��� such that

� � �� � ���

as follows. Since � is balanced, there are ���� zeros and ����

ones in the truth table. Now choose ���
 out of ���� zeros
arbitrarily and change them to ���
 ones. Similarly, choose
���
 out of the original ���� ones arbitrarily and change them
to ���
 zeros. Let �� be a Boolean function which have the
resulting truth table. Let

���
���
� � � ���

Then it is easy to see that �� and ��� are balanced.
For example, consider � with 
 � � such that its truth table

is
�
��
�

��

�
��
��

Choose 4 zeros and 4 ones as follows.

��
����
��
�
���

���
��
��

Then �� has the following truth table.

���
�

��



���
��

��� has the following truth table.

��
���
�
�

��


��

We can see that �� and ��� are balanced.
Next define ����� � � � � ��� as

�
���
� ��� � ����

If �� � 
, then � � ���. If �� � �, then � � ��� � � � ��.
Therefore � is balanced because � � and ��� are balanced. (See
Table II for the truth table of � . )

Finally let

����� ��� � � � � ��� � ������ ��� � � � � �����

� �������� ��� � � � � �����

be a Boolean function such that

���� �� � �����	��� 
���

where ����� ��� � � � � ��� � �	��� 
�. Then we have

���� �� � ������ �� � ���� ��
��� ����

� ���� � ���� � ���� � �� � ���

� ���� � ���� � ���� � ��� � �� � �� � ����


 ���� � ���� � ���� � �� � ����� ���� � ����

� ���� � ��� � ���

� ���� � ��

� ���� ���

where ���� denotes the Hamming weight of �.
Now since �� � �	�� � �� 
� ��, we have

���� �� 
 ���� ���


 �����	�� � �� 
� ���

� 	��
� � � �� 
� ���

On the other hand, we have

���� �� � �����	��� 
�� � 	��
� �� 
��

Therefore
	��
� �� 
� 
 	��
� � � �� 
� ���

B. Lower Bound for Any  (I)

Theorem 5.2:

	��� �� 
� 


�
����� 
� �� if  � 

�	��� �� �� 
� �� if  
 �

Proof:
a) Case  � 
: Suppose that ���� 
� �� is achieved by

� ����� � � � � �����. That is,

��� �� �	��� 
� ��� � ���� 
� ���

Let ����� � � � � ��� � � ����� � � � � ����� � ��. Then it is easy
to see that ����� � � � � ��� is balanced. Therefore, ���� is a
0-resilient function. Further,

	��� �� 
� 
 �����	��� 
��

� ��� �� �	��� 
� ��� � ��� �� �	��� 
� ���

� ����� 
� ��

b) Case  
 �: Suppose that 	����� �� 
��� is achieved
by a �� ��-resilient function � ����� � � � � �����. That is,

��� �� �	��� 
� ��� � 	��� �� �� 
� ���

Let ����� � � � � ��� � � ����� � � � � ����� � ��. Then it is easy
to see that ����� � � � � ��� is a -resilient function. The rest of
the proof is similar to the above.

Corollary 5.1: 	��� �� 
� 
 ��	����� 
� � ��.
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C. Lower Bound for Any  (II)

Theorem 5.3: Suppose that there exists ����� � � � � ��� such
that

�����	��� 
�� 
 �

and

����� � � � � ��� � ������ � � � � ���� ������ � � � � ���

for some �� and ��, where � � � � 
 � �, � � � � 
 � �.
Let

 � ����
��� �� �� ���

Then
	��� � � �� 
� �� 
 ��

Proof: Let�
������ � � � � ���

���
� ������ � � � � ���� ��	� � � � � � ��

������ � � � � ���
���
� �� � � � � � ���� � ������ � � � � ���

It is easy to see that ����� is �
�����-resilient and �����
is �� � ��-resilient. Then define

���� ��	��
���
� ������ ��	�������� �������

where � � ���� � � � � ���.
We first show that � is -resilient. For ��	� � 
,

���� 
� � �����

which is �
��� ��-resilient. For ��	� � �,

���� �� � �����

which is �����-resilient. Therefore, ���� ��	�� is -resilient,
where  � ����
��� �� �� ��.

We next prove that �����	�� � �� 
 � ��� 
 �. Choose
���� ��	�� such that ������ � � � � and

���� �� � �����	�� � �� 
� ����

Now � is written as

���� ��	�� � ������ ��	������

for some �� � �	�� � �� 
� and �� � �	��� 
�. Then we
have

���� �� � ���� �������� � ���� ��������

� ����� ��� � ����� �� � ���

� ����� ��� � ���� � ��� �� � �� � ���


 ����� ��� � ���� � ��� ���� ���� � ���

� ���� � ��� ���

Let ����
���
� �� � � � � � ���� � ��	� � � � � � ��. Then

���� �� 
 ���� � ��� ���

� ���� � �� � �� ���

� ���� � ��� �� � ��


 �����	��� 
��

because �� � �	��� 
� and �� � � � �	��� 
�. Hence

�����	�� � �� 
� ��� � ���� ��


 �����	��� 
��


 �

Corollary 5.2: 	��
� �� �� 
 ��.

Proof: Let

����� � � � � ��� � ������
 � ������

� ����
�� � ����� � �
������

Then it is known that [18]

�����	��� ��� � ���

Let � � �, 
 � �, � � � and � � � in Theorem 5.3. Then we
obtain this corollary.

Corollary 5.3: Suppose that 
 � �� � �, where 
 � � � �
and � 
 �. Let  � �� � �. Then

	��� �� 
� �� 


�
���� � �

�

��� if 
 � even
���� � �

���
� if 
 � odd

Proof: For 
 � even, let

����� � � � � ��� � ���� � �
� � � � � � �������

Then it is known that

�����	��� 
�� � ���� � �
�

���

(� is a bent function). In Theorem 5.3, let�
������ � � � � ���� � ���� � � � � � ���������
������	�� � � � � ��� � ���	����	� � � � � � ������

Then � � �� and � � �� � �. Hence

 � ����
� �� � �� �� � �� ��

� ������ � �� �� � �� �� � ��

� �� � �

because � 
 
.
For 
 � odd, let

����� � � � � ��� � ���� � �
� � � � � � ���������

Then for any ����� � � � � ��� such that ������ � �,

���� �� � ���� ������ � ���� ������


 �����	��� 
� ��� � �����	��� 
� ���

� �
�
���� � �

���
� ��

�
� ���� � �

���
�

Hence
�����	��� 
�� 
 ���� � �

���
� �

Finally similarly to 
 � even, we have  � �� � �.
Therefore, this corollary holds from Theorem 5.3.

VI. UPPER BOUNDS ON 	��� �� 
�

In this section, we derive upper bounds on 	��� �� 
�.
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A. Upper Bound (I)

Theorem 6.1: For  
 �,

	��� �� 
� � 	��� �� �� 
� �� � ��� � �� 
� ���

Proof: Any ����� � � � � ��� and ����� � � � � ��� are written
as�

����� � � � � ��� � ������ � � � � ������ �������� � � � � ������
����� � � � � ��� � ������ � � � � ������ �������� � � � � ������

Then

���� �� � ���� ������ � ���� ������

� ����� ��� � ���� � ��� �� � ���

� ����� ��� � ���� � �� � ��� ���

Now let � be any -resilient function such that

�����	��� 
�� � 	��� �� 
��

Choose �� such that ������� � � and

����� ��� � ����� �	��� 
� ���

arbitrarily. Choose �� such that ������� � � � � and

���� � �� � ��� ��� � ���� � �� � ��� �	�� � �� 
� ���

arbitrarily. Then

1) ������ � �. Therefore,

���� �� 
 �����	��� 
�� � 	��� �� 
��

2) �� is �� ��-resilient. Therefore,

����� ��� � ����� �	��� 
� ��� � 	��� �� �� 
� ���

3) It is easy to see

���� � �� � ��� ��� � ��� � �� 
� ���

Therefore,

	��� �� 
� � ���� ��

� ����� ��� � ���� � �� � ��� ���

� 	��� �� �� 
� �� � ��� � �� 
� ���

B. Upper Bound (II)

Lemma 6.1: Suppose that ���� is balanced and
��������� � 
� �, where � � ���� � � � � ���. Then

���� �� � 
 ��� ��

Proof: Note that

���� �� � ���� � ����� ���� � ���

Since ������ � 
 � �, it holds that ���� � 
 ��� � [20,
Lemma 2.2]. Therefore, it holds that ���� �� � 
 ��� �.

Theorem 6.2: Let � � � � 
� � and 
 �  � 
� �� �. If
����� � � � � ��� is a -resilient function, then

�����	��� 
�� � 
 ��� ��
�

�
�	��

Proof: We show that

������� ����� � 
 ��� ��
�

�
�	� (1)

for any ���� such that ������ � �, where � � ���� � � � � ���.
Let ���� �� be the number of degree � terms � �� � � ����
involved in �.

Base step on �. If � � �, then the theorem follows from
Proposition 2.2.

Inductive step on �. Assume that (1) is true for � � ��.
We will show that it is true for � � �� � �.

Base step on ���� �� � ��. If ���� �� � �� � 
, then
����� � � � � ��� � �	���� 
�. By an induction hypothesis on
�, we have

���� �� � 
 ��� ��
�

��
�	�

� 
 ��� ��
�

���� �	��

Inductive step on ���� �����. Assume that (1) is true for
���� ����� � ��. We show that (1) is true for ���� ����� �
�� � �. Without loss of generality, we assume that

����� � � � � ��� � �� � � ����	� � ������ � � � � ���

for some �� such that ����� �� � �� � ��.
Define����
���

�����������

���
� ����� � � � � ���	�� ���	�� � � � � ���

������������

���
� ������ � � � � ���	�� ���	�� � � � � ���

�����������

���
� ������������� � �

�
����������

�

Then we have�
���� ��� � ������ � � � �� ������� � ������ � ��

�

���� �	��

���� �� � ������ � � � �� ������� � ������	�� � ������

for some integer � by an induction hypothesis on ���� � ����.
Therefore we have

���� �� � �
� �

���� �	�� � ������	�� � ��������

From our condition on the parameters, it holds that

 � 
� ��� � ��� ��

Therefore, we have


� ��� � �� 
 � � 
 


�� � �
�� �

Hence
������	�� � 
 ��� �

� �

���� �	��

Further, from the induction hypothesis on ���� �� � ��, we
have

������ � 
 ��� �
�
��������
���� �	�

� 
 ��� �
� �

���� ��

since ������ is a � � ��� � ���-resilient function and
���������� �� � �� � ��. Therefore,

������� � 
 ��� �
� �

���� �	��
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Finally, putting all things together, we have

���� �� � 
 ��� ��
�

�
�	�

for any � such that ������ � �. Therefore, this Theorem holds.

(Remark)
1) Lemma 6.1 is almost the same as [17, Lemma 2].
2) From McEliece’s Theorem, all weights in �	��� 
� are

multiples of �������	�� [12, Corollary 13]. However, we
cannot apply this fact because we do not assume any
weight divisibility on � .

Corollary 6.1: If � � 
� � �, then

	��� �� 
� � ���� 
��
�
���� 
� ��� ��

�

�
�	�
�
�

Proof: It is clear that 	��� �� 
� � ���� 
�. Then apply
Theorem 6.2.

Corollary 6.2: Let  
���
� 	����� �� 
���������� 
���.

Then
	��� �� 
� �  �

�
 ��� ��

�

�
�	�
�
�

Proof: From Theorem 6.1 and Theorem 6.2.

Theorem 6.3: 1) If 
 is even and  �
� ��� � �

� � �, then

	��� �� 
� � ���� � ��
�

�
�	��

2) If 
 is even and  �� �� � � �
� � �, then

	��� �� 
� � ���� � �
�

��� � ��
�

�
�	��

3) If 
 is odd and ��
�

�
�	� � ���� � 
�����
�, then

	��� �� 
� � ���� � ��
�

�
�	��

4) If 
 is odd and ��
�

�
�	� � ���� � 
�����
�, then

	��� �� 
� is the highest multiple of ��
�

�
�	� which is less

than or equal to ���� � 
�����
�.

Proof: We prove only cases 1 and 2, the other cases
being similar.

1) Using Theorem 6.2 for any 
-variable, -resilient func-
tion � and � � �	��� 
�, we have ���� �� � 
 ���
��

�

�
�	�. Thus, ���� �� � ���� � ���

�

�
�	� for some �.

Clearly � cannot be 0 for all � and hence �����	��� 
��
is at most ���� � ��

�

�
�	�.

2) As in 1, we have ���� �� � ���� � ���
�

�
�	� for some

�. Let �
�

��� � !��
�

�
�	� (we can write in this way as

 ����� � �
� ��). If for all � we have � � !, then � must

necessarily be bent and hence cannot be resilient. Thus
there must be some � such that the corresponding � �
!. This shows that �����	��� 
�� is at most ���� �
�
�

��� � ��
�

�
�	�.

(Remark)
1) Proposition 2.2 is obtained as a special case of Theo-

rem 6.2.
2) Proposition 2.3 is obtained as a special case of Theo-

rem 6.3.

TABLE III

NUMERICAL RESULT ON ����� �� ��.

� � � � � � � �

� 	 � 0 2� 4��� 12� 24�-26� 56�

� 	 � 0 2� 6� 12�-18 36�-44

� 	 
 � 	 � 0 2� 6�-8 18�-22�

� 	 � 0 2� 6�-8

� 	 � 0 2�

� 	 � 0

� � � � � � � �

� 	 � 0 4��� 12	 24��� 56�

� 	 � 0 6
 12�-18 28
 -44

� 	 � � 	 � 0 4�-8 8�-22�

� 	 � 0 4�-8

� 	 � 0

� � � � � � � �

� 	 � 0 8��� 16�-24� 56�

� 	 � � 	 � 0 12�-16� 24�-44

� 	 � 0 8�-22�

� 	 � 0

VII. NUMERICAL RESULT

We present a table of numerical values of 	��� �� 
� which
are obtained from our bounds and the previous bounds. The
entry �-� means that � � 	��� �� 
� � �.

In Table III,

1) ��� is obtained from Theorem 5.2.
2) ��� is obtained from Theorem 5.1.
3) ��� is obtained from Theorem 5.3.
4) ��� is obtained from Corollary 5.2.
5) �"� is obtained from Corollary 6.1.
6) ��� is obtained from Corollary 5.3.
7) ��� is obtained from Proposition 2.2.
8) ��� is obtained from Proposition 2.3.
9) ��� is obtained from [17, Table 1].

10) ��� is obtained from [16].
11) Unmarked values are obtained from ���� 
�.
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